
sdmay20-43

Advisor:
Simanta Mitra

Client:

Simanta Mitra

Team Member – Roles:
Diego Realpe – Team Lead

Adrian Hamill – Test Engineer
Benjamin Carland – Test Engineer

Megan Miller – Test Engineer | Website Manager
Yi-Hsien Tan – Test Engineer | Website Manager | Organizer

Team Website:
http://sdmay20-43.sd.ece.iastate.edu

Revision Date

0 9 – 25 - 2019
1 10 – 6 - 2019

2 12 - 6 - 2019
3 12 – 8 – 2019

Analysis of GitLab Project
Using Boa

DESIGN DOCUMENT

http://sdmay20-43.sd.ece.iastate.edu/

SDMAY20-43 1

Executive Summary

Development Standards & Practices Used

• IEEE Standards Association

• P7002 – Data Privacy Process

• P2675 – Standard for Building Reliable and Secure Systems Including

Application Build, Package and Deployment

• P982.1 – Standard for Measures of the Software Aspects of Dependability

Summary of Requirements

• Integration of Boa with GitLab.

• Analysis of GitLab project with Boa.

• Generation of analysis report using R with data from GitLab.

Applicable Courses from Iowa State University Curriculum

• SE/ComS309 – Software Production

• SE/ComS319 – Construction of User Interface

• SE339 – Software Architecture and Design

• SE409/509 – Software Requirements

• ComS227 – Introduction to Object Oriented Programming

• ComS252 – Linux Essentials

• ComS362 – Object Oriented Analysis and Design

• ComS342 – Principles of Programming Language

• CprE430 – Introduction to Networks and Protocols

New Skills/Knowledge acquired that was not taught in courses

• Domain Specific Language

• Database queries

• Data Mining

• Data Analysis

• Server and Cluster Handling

SDMAY20-43 2

Table of Contents

1 Introduction 4

1.1 Acknowledgement 4

1.2 Problem and Project Statement 4

1.3 Operational Environment 4

1.4 Requirements 5

1.5 Intended Users and Uses 5

1.6 Assumptions and Limitations 5

1.7 Expected End Product and Deliverables 5

2. Specifications and Analysis 6

2.1 Proposed Design 6

2.2 Design Analysis 7

2.3 Development Process 7

2.4 Design Plan 8

3. Statement of Work 8

3.1 Previous Work And Literature 8

3.2 Technology Considerations 9

3.3 Task Decomposition 9

3.4 Possible Risks And Risk Management 10

3.5 Project Proposed Milestones and Evaluation Criteria 10

3.6 Project Tracking Procedures 11

3.7 Expected Results and Validation 11

4. Project Timeline, Estimated Resources, and Challenges 11

4.1 Project Timeline 11

4.2 Feasibility Assessment 12

4.3 Personnel Effort Requirements 14

4.4 Other Resource Requirements 15

4.5 Financial Requirements 15

5. Testing and Implementation 16

5.1 Interface Specifications 16

5.2 Hardware and software 16

5.3 Functional Testing 16

SDMAY20-43 3

5.4 Non-Functional Testing 16

5.5 Process 16

5.6 Results 17

6. Closing Material 18

6.1 Conclusion 18

6.2 References 18

6.3 Appendices Error! Bookmark not defined.

List of figures/tables/symbols/definitions

INDEX OF FIGURES

Figure 1 : Gantt Chart for Deliverables 6

Figure 2 : Conceptual Visual Plan 8

Figure 3 : Gantt Chart for Project Timeline 12

Figure 4 : System Testing Flow 17

Figure 5 : Data Pipeline Process 17

INDEX OF TABLES

Table 1 : Requirements 5

Table 2 : Deliverables 6

Table 3 : Technologies 9

Table 4 : Task Decomposition 10

Table 5 : Risk Management 10

Table 6 : Task Duration Estimation 12

Table 7 : Task Effort Estimation 15

file://///Volumes/sdmay20-43/www/docs/Design_Document2.docx%23_Toc26740692

SDMAY20-43 4

INDEX OF DEFINITIONS

1. Boa – A DSL developed by ISU to data mine software repositories.

2. Data Scrapper – One of the sub-team that specializes in scrapping data from GitLab

repositories.

3. Boa Language Expert – One of the sub-team that specializes in understanding and creating

Boa queries.

4. Boa expert – The experts who created/are professional in Boa.

5. DSL – Domain Specific Language

6. CLI – Command Line Interface

7. OS – Operating System

8. RID – Requirement ID

9. FR – Functional Requirement

10. NR – Non-functional Requirement

11. DID – Deliverable ID

12. TID – Task ID

1 Introduction

1.1 ACKNOWLEDGEMENT

Special thanks to the boa team experts for providing their professional help throughout our
development, as well as our advisor Simanta Mitra for giving us valuable feedbacks, and providing
us resources we need.

1.2 PROBLEM AND PROJECT STATEMENT

This project aims to integrate an existing Domain Specific Language (DSL) Boa, developed by a

team of experts in Iowa State University, with GitLab. This project can help our client in evaluating

the repositories of his classes on GitLab efficiently.

The project consists of three major tasks:

• Integration of Boa with GitLab.

• Analysis of GitLab projects with Boa.

• Generation of analysis report using R with data from GitLab.

The output of our design:

• Command Line Interface (CLI) program that does analysis on GitLab repositories.

• Output analytic reports with R programming language.

1.3 OPERATIONAL ENVIRONMENT

The program should run on both Windows and Linux OS command line. No support for mobile
application.

SDMAY20-43 5

1.4 REQUIREMENTS

RID Requirement Name Description

FR1 Analyze Repositories The program shall analyze repositories from GitLab.

FR2 Analytic Reports in R The Program shall display analytic reports with R
programming language.

FR3 Report Partitioning The report shall contain two sections – commitment
and code quality analysis.

FR4 Backend Automation When the program runs, backend work shall be done
automatically without manual connection.

NR1 CLI The program shall be a CLI.

NR2 Ease of Learning New users shall be able to learn the use all features of
this program in less than 10 minutes.

NR3 Ease of Use Analytic reports shall be displayed with just one click.

NR4 Security and Confidentiality All information of repositories shall remain
confidential.

Table 1 : Requirements

1.5 INTENDED USERS AND USES

This program is intended for:

• SE/ComS309 evaluators/graders.

• Possibly any users who are interested in data mining software repositories, depending if
our client wants to publish the program.

1.6 ASSUMPTIONS AND LIMITATIONS

Assumption:

• There are no multiple user running this program at the same time.

• The primary users will be our client/his classes’ graders.

Limitation:

• There are some backend functions that must be done manually occasionally.

• Only professionals who understand the program can maintain the program.

1.7 EXPECTED END PRODUCT AND DELIVERABLES

Expected End Product:

• Backend software for analyzing repositories on GitLab.

• A CLI program.

Expected End Deliverables:

• A functional program uses to analyze repositories on GitLab.

• Able to display analytic reports in R programming language.

SDMAY20-43 6

DID Date Deliverable

D1 12/1/2019 Ideas for commitment and code quality analysis to create Boa
queries.

D2 1/20/2020 Conclude what queries to develop.

D3 2/1/2020 Able to access GitLab data with the software created.

D4 2/15/2020 Show working queries (partially).

D5 3/1/2020 Run working queries on GitLab.

D6 4/1/2020 Prototype with R analysis
Table 2 : Deliverables

Project Schedule

Figure 1 : Gantt Chart for Deliverables

2. Specifications and Analysis

2.1 PROPOSED DESIGN

On the Boa language side of the problem we have been learning the syntax and semantics of the
language. To do this we have been creating short presentations for our advisor to help us learn the
language by teaching the language. This is helpful because it both teaches our advisor/client what
types of things the language can do and encourages us to do more in-depth research about
different things that can be done in Boa. This has involved the Boa team running lots of queries on
the Boa repositories to learn about the language and hopefully give us a better idea of what types of
queries would be helpful for our purposes.

11/24/2019 12/14/2019 1/3/2020 1/23/2020 2/12/2020 3/3/2020 3/23/2020 4/12/2020

D1

D2

D3

D4

D5

D6

SDMAY20-43 7

On the Gitlab implementation side of the problem they have replicated the framework on a
machine and are currently working on json scrapping. There is some difficulty with due to the lack
of understanding of this from the current graduate students working on boa, so this is something
the team has been working on for a week or so. This has been the primary implementation that we
planned on, particularly because it’s the simplest way. The json scrapping is important here
because we want the data to hold any and all the GitLab data possible. This would allow the
maximum manipulation of the repositories for our purposes.

In terms of IEEE standards quality of code is the primary concern here. We want to ensure that
there are no unforeseen errors in the queries or in the implementation that would cause problems
for students or teachers.

2.2 DESIGN ANALYSIS

The team set up a basic implementation of the Boa framework for GitLab, which was built
referencing the current implementation of Boa for GitHub. This was a very effective strategy so far;
it was well thought out and very realistic. As said in the previous section there has been issues with
scrapping, but this is a very recent development and is being handled.

In the future the Boa Expert team will be required to make more direct contribution to the project
when the focus switches from learning to creating. So far, the Boa Expert team hasn’t had any
significant issues.

2.3 DEVELOPMENT PROCESS

The team has been operating in Agile methodology. An iterative plan has been laid out where we
meet with our client/advisor and get feedback on works accomplished weekly, as well as providing
feedback within the team. The team then works on their weekly duties and meets back the next
week unless there is reason to meet sooner.

SDMAY20-43 8

2.4 DESIGN PLAN

Figure 2 : Conceptual Visual Plan

3. Statement of Work

3.1 PREVIOUS WORK AND LITERATURE

As previously mentioned, Boa is developed by a team of experts in Iowa State University. Being able

to review their sample queries, data structure and such are definitely a big help in this project. So

far, the program on the Boa website (boa.cs.iastate.edu) does most of the job we anticipate such as

getting data from the software repositories, running the Boa queries on the targeted software

repositories, displaying output data, and our main purpose is to make the Boa program work on

GitLab.

 A lot of our reference comes from the previous Boa program developed [1], and there are some

advantages and shortcomings to it:

Advantages:

• A great reference as a high quality, well maintained DSL.

• We can personally meet with the creators and the experts themselves for consultation.

SDMAY20-43 9

• The program is still active and being maintained.

Shortcomings:

• Since it’s a DSL, there are no detail documentations about it.

• There are limitations when it comes to using program created by others.

3.2 TECHNOLOGY CONSIDERATIONS

Technology Strength Weakness

Boa DSL Its highly readable, very
efficient and specifically
designed for data mining.

High learning curve, lots of
limitation as there are no
external libraries.

bash Powerful language and native
on most machine we use for
our development.

Its hard to debug and the
syntax is very particular.

Java A comfortable language for all
members, good for working
locally with Boa DSL.

A lot more to code than
languages like python/bash

R Simple and powerful analysis
generator. High
manipulability.

Its designed for data set that’s
way larger than what we are
working with.

Table 3 : Technologies

3.3 TASK DECOMPOSITION

Our requirements and deliverables will be broken down into several tasks:

• Able to access metadata of GitLab repositories like GitHub provides.

o Pull all GitLab repositories to a server.

o Make copies of the repositories to GitHub.

o Push the metadata from the server to each of the respective repository to GitHub.

*This allow us to generate metadata for GitLab repositories with APIs from GitHub.

• Boa queries for analyzing software repositories.

o Brainstorm ideas for boa queries.

o Ideas should be separated into two parts: code quality and commitment.

o Meet with our client to decide which ideas should be taken.

o Develop those ideas into actual boa queries.

o Test those queries on the pre-existing Boa program.

• R Data Analysis.

o Run R analysis on results generated by the pre-existing Boa program.

o Make sure the analysis report is styled correctly to fit our client’s taste.

• Testing and prototyping our program.

o Make sure metadata from GitHub can be read with our program.

o Test queries on our own GitLab repositories data set.

o Export results run by our program to R for generation of analysis report.

SDMAY20-43 10

TID Description Dependent TID(s)

T1 Pull all GitLab repositories to a
server

N/A

T2 Make copies of the repositories
to GitHub

T1

T3 Push the metadata from the
server to each of the respective
repository on GitHub.

T2

T4 Brainstorming ideas for boa
queries.

N/A

T5 Separating ideas into two parts. T4

T6 Picking ideas for development. T5

T7 Develop ideas into boa queries. T6

T8 Test queries on pre-existing
Boa program.

T7

T9 Run R analysis on results
generated by T8.

T8

T10 Style analysis report. T9

T11 Make sure metadata from
GitHub can be read with our
program.

T3

T12 Test queries on our own GitLab
repositories data set.

T3, T11

T13 Export results run by our
program to R for generation of
analysis report.

T3, T9, T11, T12

Table 4 : Task Decomposition

3.4 POSSIBLE RISKS AND RISK MANAGEMENT

Risk Type Possible Error Mitigation Plan

Cost N/A N/A

Material N/A N/A

Equipment Break down of MacBook used for
data scrapping tasks.

Borrow/look for replacement for a
new MacBook.

Knowledge Aspect Since each of our member has
different experience, depending on
the technologies chosen for
development, team experience will
vary.

High learning curve of Boa DSL
might cause some hard stuck on
our progress.

Constantly sharing resources to
help each other on different
aspect.

Work closely with our advisor and
the Boa experts and seek for help if
things went wrong.

Table 5 : Risk Management

SDMAY20-43 11

3.5 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA

Below shows our milestone planned for the second half of the year:

• Milestone 1: Make an actionable plan for gathering data

• Milestone 2: Create questions that can be answered by our data

• Milestone 3: Execute the plan for gathering metadata

• Milestone 4: Show working queries (partially).

• Milestone 5: Run working queries on GitLab.

• Milestone 6: Polish and create a finished product for the data gathering and query creation

Unit testing is unfeasible for backend pipeline. Data processing can be tested by setting up sample

repositories with edge cases and small amounts of data. After, verify it metadata was integrally

carried over.

The Boa program itself will probably also use manual testing; however, we will use the GitHub

implementation of Boa for most of the testing of our queries.

Have blind tests with repositories with high- and low-quality code and determining if our analytics

can distinguish them apart.

3.6 PROJECT TRACKING PROCEDURES

The team will have a weekly meeting to keep track of each member’s work and progress. We will

also be using Slack and Google Planner to track overall progress of our project. With the assistant

of these tools, we will ensure our completion of each milestone, and eventually the project itself by

May 2020.

3.7 EXPECTED RESULTS AND VALIDATION

The desire outcome of our project would be a CLI program that can analyze all software

repositories on an account (our client’s) on GitHub/GitLab. The analysis result will then be

translated into graphical analysis report with R programming language. User should be able to

choose specific analysis (commitment/code quality, and which query to run) and get specific result.

All the backend translation/analysis should be done automatically and hidden from the user.

When the prototype is present, the team will run multiple user acceptance test (mainly with our

intended users and our client) before releasing to ensure our program quality and satisfaction.

4. Project Timeline, Estimated Resources, and Challenges

4.1 PROJECT TIMELINE

Our project timeline will be shown on the Gantt Chart below according to tasks and deliverables.

SDMAY20-43 12

Figure 3 : Gantt Chart for Project Timeline

All tasks mentioned in part 3.3 are covered in the Gantt Chart above with duration (day) and are

sorted by deliverables.

• Deliverable 1: Red

• Deliverable 2: Orange

• Deliverable 3: Green

• Deliverable 4: Light Blue

• Deliverable 5: Dark Blue

• Deliverable 6: Purple

Below includes a table to show each task’s start date, end date and duration needed:

TID Start Date End Date Duration (day)

T1 11/26/2019 12/5/2019 10

T2 12/6/2019 12/13/2019 8

T3 1/13/2020 1/31/2020 18

T4 11/26/2019 12/1/2019 6

T5 12/4/2019 12/8/2019 5

T6 1/13/2020 1/12/2020 8

T7 1/21/2020 2/13/2020 24

T8 2/14/2020 2/15/2020 2

T9 2/16/2020 3/1/2020 14

T10 3/2/2020 3/11/2020 10

T11 1/31/2020 2/1/2020 2

T12 2/15/2020 3/1/2020 14

T13 3/12/2020 4/1/2020 20
Table 6 : Task Duration Estimation

11/24/201912/14/2019 1/3/2020 1/23/2020 2/12/2020 3/3/2020 3/23/2020 4/12/2020

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

SDMAY20-43 13

The team has divided all the tasks into 6 deliverables. We have accomplished deliverable 1 and

planning to work on half of deliverable 2 before the winter break. The team agrees on this planning

as most of them are achievable, and since our prototype is expected to be delivered on the 1st of

April 2020, we believe there are plenty of time to spare if improvements/changes are needed.

 On top of that, the team is prepared to adjust the schedule as needed if there are requirement

changes from our client, or any unforeseen issue that will lead to an extension on our working

duration. Since our team is divided into two sub-teams, we are able to work on two different aspect

of the project at the same time. This allow us to have more room of flexibility when it comes to

time constraint.

4.2 FEASIBILITY ASSESSMENT

This is a very wide end project, as our client does not limit us on our creativity and imagination.

The requirements of the project are clear, but we have plenty of freedom to design and enhance our

program. At the very minimum, the final product will consist of a CLI frontend that takes

command of queries, a backend analysis on software repositories of GitLab, and generation of

analysis report in R.

The overall requirements of this program are very feasible and practical, as they are in the simplest

form possible to get the work done. Since our client’s basic requirement is to have the simplest

working software, this allows future additional implementation depending on our schedule. The

project timeline will help us keep track on our progress, and the team believes we will most likely

be ahead of schedule.

Foreseen Challenges:

• Data Scrapping: At this point, the team decided that it is more feasible to do the

‘migration’ of GitLab to GitHub to obtain metadata of all the targeted software repositories.

It is too time consuming and difficult to replicate GitHub’s feature on GitLab.

• Boa DSL: Boa is a high learning curve DSL, even with good understanding on its syntax, it

is challenging to translate our ideas into actual queries. Without detail documentations,

the Boa Language Expert sub-team will have to meet up with the Boa experts to learn more

about the language instead of self-studying.

• Maintenance: The client would like to use the program for a long period of time. As

mentioned in 1.6 limitation, the backend part of the program is hard to maintain if the

person has no knowledge about it.

SDMAY20-43 14

4.3 PERSONNEL EFFORT REQUIREMENTS

Below shows our explanation of estimation of effort on each of the task. Estimated time will not be

included in this table; please refer Table 4.1 for estimation of time for each task.

TID Description Estimation of Effort

T1 Pull all GitLab repositories to a server This is the very first requirement to get our
backend work running. This allow us to
manually access the repositories without
connecting to our client’s class repository.

T2 Make copies of the repositories to
GitHub

Since we decided to ‘migrate’ the repositories
from GitLab to GitHub, this should only take
time more than being difficult.

T3 Push the metadata from the server to
each of the respective repository on
GitHub.

Similar to T2, this will take much more time and
creating a script to do so could prove to be
challenging.

T4 Brainstorming ideas for boa queries. This task will require us to come up with as
many ideas as possible for our client to hand
pick some of the best. Although its deliverable is
on the 1st of December, this task should last for
the entire development if we come up with
better ideas.

T5 Separating ideas into two parts. This should be one of the easiest tasks in our
task list, it also helps us to determine if a query
idea is good by evaluating if it is sortable into
either commitment or code quality. It is not a
good idea if it is too vague to be in either
category.

T6 Picking ideas for development. Handpicking ideas for development should not
take up much time as well as we only need a
handful of queries to test our program. Similar
to T5, this task should last for the entire
development in case there are better ideas to
translate into queries.

T7 Develop ideas into boa queries. This task is estimated to be the most
challenging and time-consuming task as none of
the team member is familiar with Boa DSL, and
as mentioned, it has a high learning curve. This
will be the task that takes up the most
development time.

T8 Test queries on pre-existing Boa
program.

Most part of the testing should also be done in
T7 during development. This task is created for
the final testing to make sure the queries we
created work before delivering.

T9 Run R analysis on results generated by
T8.

Since none of our team member has any
experience with R, this could potentially be a
time-consuming task. Our client ensured us it is
a fairly easy language to pick up on, so we
estimated about two weeks’ time to learn and
apply R on generating analysis report on our
query results.

SDMAY20-43 15

T10 Style analysis report. Styling should be an important task as we want
our client to be satisfied with the look of the
analysis report for easier understanding and
better grading.

T11 Make sure metadata from GitHub can be
read with our program.

Similar to T8, this task is created for the final
testing to make sure the metadata from GitHub
(migrated from GitLab) can be read with our
program before delivering.

T12 Test queries on our own GitLab
repositories data set.

This testing task allow us to officially put the
work from two sub-teams together and make
sure there are no errors. About two weeks’ time
are spared in case of any unforeseen
circumstance.

T13 Export results run by our program to R
for generation of analysis report.

The last task will allow us to run end-to-end
testing from running queries on our own GitLab
repositories data set to generating analysis
report with the results. We will also start
prototyping our program.

Table 7 : Task Effort Estimation

4.4 OTHER RESOURCE REQUIREMENTS

Physical Resources:

• The only physical resource the team need is a working MacBook to develop the backend

part of the program.

Software Resources:

• The pre-existing Boa program on the Boa website will be our main way to learn about Boa

DSL before we are able to have our own data set. The Boa Language Expert sub-team will

be using IDE such as Eclipse for some local testing as well.

Knowledge Resources:

• Internet sources and assistance from our client, as well as the Boa experts.

4.5 FINANCIAL REQUIREMENTS

The team has no financial requirements to meet on this project.

SDMAY20-43 16

5. Testing and Implementation

5.1 INTERFACE SPECIFICATIONS

The software interfaces we will need to test our software are minimal. A series of a few GitLab
repositories with dummy code of good and bad quality and various amounts of commits that we
wish to set up so we can test the efficiency of the suite of queries we have created and determine of
they were able to provide useful insights to each of them.

5.2 HARDWARE AND SOFTWARE

➢ CS309 Old Repositories: These will be used to perform load testing on our system, filled
with code from past 309 semesters

➢ Dummy Repositories: These will have mocked code with edge cases and various types of
errors.

➢ Mac Mini: This computer will be our test server where the first prototype will be tested.
➢ Boa Website: Functional website from the Boa labs where isolated queries will be compiled

and tested.

5.3 FUNCTIONAL TESTING

➢ Unit: We are going to make each of the queries we develop to go through unit testing by
running them in isolation on the Boa website which has an online compiler of the Boa
language. This to test the correct functionality of each before integrating them in the
query suite

➢ Integration: We are going to use some dummy repos developed to observe if the transition
between the backend pipeline to the analysis piece of the system transitions the
information accurately

➢ System: Our final tests for the system will be performed close to the end of Spring
semester, using the repositories from CS309 of the current semester. If successful we
should see analysis and insights that correspond to those student’s final grades.

5.4 NON-FUNCTIONAL TESTING

➢ Load: Using access to the large amounts of code found in the archives of CS309 we will

perform a load test to determine that the final product is fully able to handle the volume of
an average 309 class for our client.

➢ Compatibility: Unfortunately, the overarching project that we are using can only handle
MacOS. However, we will test compatibilities on both the Client’s machine and our Mac
Mini (which have different versions of MacOS) to ensure that the transition between one
and the other has no bugs or issues.

➢ Usability: At the end we will allow Dr. Mitra to have a period of test with the final product
and address any usability features he would like changed or added.

5.5 PROCESS

The process for testing each of our methods will follow a semi manual testing. Since the technology

we are using is very niche, there are no real ways of mocking it. Our overall plan is to perform blind

experiments with our data to test the reproducibility of our insights. By feeding the pipeline

SDMAY20-43 17

Figure 5 : Data Pipeline Process

unknown quality of code and obtaining our results, we can check the veracity of it by actually

reading from the project afterwards and if the assessments of the system seem accurate

Figure 4 : System Testing Flow

5.6 RESULTS

Backend Results

The pipeline backend has yielded some results already regarding
the cloning, scraping and automation of the data. Our first solution
for this problem looked to pull directly from the GitLab repo using
a government program designed for this. However, after
conclusions that the program was not suitable and failed to provide
the particular pieces of metadata we required we moved onto a
different one. This solution allowed us to make clones of the
repositories in GitHub with all data intact (which is one of our
requirements) and from there we can use the Boa Labs code which
does work on GitHub and allow the pipeline to query a GitHub API
to construct the metadata JSON files necessary for Boa to execute
against. A diagram of the breakdown of the system can be seen to
the left where the process is detailed.

This system still needs to be tested against the edge cases of a
repository, due to be completed in the next semester, but based on
the trials and errors we underwent to bring a prototype of the
scaping script and process we have gained tons of knowledge on
how Boa operates and also has given us a time to partner with the
experts that use Boa, allowing us to have a quick place where to go

for extra resources or when we get stuck in a problem.

SDMAY20-43 18

Boa Analysis

The members on this side of the project have had a lot of great ideas and research into how to use
some of the tools and functions that the Boa libraries offer to make a tool that talks about code
quality on each of the repos. In the future as we go into the development and writing of these
queries, the directions we take to assess the quality of a project will spread out and multiple aspects
of the metrics we are given will be compared.

As mentioned before, Boa is a complex language to write high level analysis tools for and we expect
a lot of trial and error in this section as lots of ideas will be tried and discarded while we push the
limits of what Boa can and cannot do.

Final results on this area will be a suite of queries that can be toggled on or off that analyze
different parameters of the code, we will also attempt to check the lines of code themselves too for
flawed design patterns and hopefully catch system errors like stack overflowing or unused variables
that could be slowing or hurting the performance of the analyzed project itself.

6. Closing Material

6.1 CONCLUSION

This semester our client challenged us to help him obtain the best analysis of his student’s projects

by using a very powerful but still obscure tool. Give him a product to improve his teaching. We

have designed a plan that both incorporates his specifications and advice, the tool he requested and

the knowledge of those who came before us.

So far in our project we have accomplished a solid understanding of our tools and have a clear view

of how to approach development from here on out. This after many hours of research into them

and practice. The back end, the data gathering of the project also has it’s first working prototype

after a couple of exploratory attempts that unfortunately didn’t work. We decided to opt out of our

previous solution aimed at working directly with GitLab, and instead take advantage of the already

existing GitHub API to design the pipeline.

Our plan of action for the next phase of development is refining the data pipeline we have up to

now. Seek to make it as automated as possible to aid our client, avoiding malfunctions of it for lack

of knowledge of the system. Our Boa experts will meanwhile work on the analysis part of the

project, drawing from their experiences and research from this semester, develop a suite of queries

that tells important metrics and facts about the code it is given. These will need to be calibrated to

properly tell the “health” of a project.

Lastly, we will perform tests with the sample code we have been provided from past semesters and

when we are sure of the functionality and readiness of the program, we will bring our client Dr.

Mitra to use the final version himself using his students from the current semester and get the last

reviews regarding usability and load testing.

6.2 REFERENCES

[1] H. Rajan, T. N. Nguyen, R. Dyer, H. A. Nguyen, boa – Mining Ultra-Large-Scale Software

Repositories. Accessed on: Dec. 2, 2019. [Online]. Available: www.boa.cs.iastate.edu

SDMAY20-43 19

