
Boa - Intermediate
- Level 2 -

Data Structure Types

Array - array of Type

Built-ins: new(array, int, Type), sort(array)

Map and Stack have very similar builtins to their Java counterparts

Map - map[Type] of Type

Stack - stack of Type (LIFO)

Queue - queue of Type (FIFO)

Special Built-ins: offer(queue, Type), poll(queue)

Set - set of Type

Special Built-ins: add(set, Type), union(set, set), intersect(set, set)

Other Types

For an Enum, each of the named values should be the same type

Enum - type name = enum { name1 = Type,name2 = Type, …}

Ex. type compass = enum{ N = “north”, S = “south”, W = “west”, E = “east”}

A Tuple is much like a struct

Tuple - type name = { name1: Type, name2: Type, …}

Ex. type worker = { num: int, name: string, onLeave: boolean}

steve : worker = { 100, “Steven Even”, false}

steve._1 = “Steven Odd” will change the second entry by position

steve.onLeave = true will change the name of the entry given

Output and Aggregators

● Boa has specific variable for output: output type

● Process:
○ Boa code pulls data & sends it to output variables

○ All projects processed in parallel

Components

1. Parameters
a. “Formal” variables

2. Indices
a. 1 or more indices

b. Allows for grouping

c. NOT the same as parameters

3. Weights
a. Max weight of 10

Output Aggregator Examples

Gets average number of programming languages used in a project

p: Project = input;

counts: output mean of int;

counts << len(p.programming_languages);

Alternate Example

False average number of programming languages in a project

p: Project = input;

counts: output mean of int;

foreach (i: int; def(p.programming_languages[i]))

counts << 1;

Bottom Example

Shows 5 least used programming languages that are used with at least 2 other

languages

p: Project = input;

counts: output bottom(5) of string weight int;

if(len(p.programming_languages) > 2)

foreach (i: int; def(p.programming_languages[i]))

counts << p.programming_languages[i] weight 1;

